商用周波数出力が可能な

電界型非接触給電システムの実機検証

徳力 雅也*,和田 翔生,日下 佳祐 (長岡技術科学大学) 黒田 敏行 (東京電力ホールディングス株式会社)

Verification of a Capacitive Wireless Power Transfer System Capable for Utility Frequency Output Masaya Tokuriki, Shoki Wada, Keisuke Kusaka (Nagaoka University of Technology) Toshiyuki Kuroda (Tokyo Electric Power Company Holdings, Inc.)

1. まえがき

バッテリを搭載したモバイル端末の充電手法の一つとし て非接触給電(WPT)システムが注目を浴びている。しかし, 先行研究で提案されている WPT システムは特定の直流出 力に向けて設計されており⁽¹⁻²⁾,既存のAC入力を想定した 製品には給電することができない。AC負荷へ給電するため には PWM インバータが必要となるが電力脈動の吸収用に 大容量の平滑コンデンサが要求され,システムが大型化す る⁽¹⁻²⁾。そこで本論文では,商用周波数出力に適した WPT システムとして,高周波重畳方式を用いたシステムを提案 し,定電圧出力が可能であることを実験により検証したの で報告する。

2. 提案する非接触給電システム

<2・1>システム全体の構成 図1に提案するシステム 構成を示す。本システムでは、ダイオード整流器によって 出力される非平滑の全波整流波形に、電力伝送部の共振周 波数の矩形波を重畳させることで電力伝送を行う。また、2 次側ではダイオード整流器、フィルタを通して全波整流状 の正弦波に復元し、極性切り替え回路によって商用周波数 入力電圧と等価な出力電圧を得る。したがって、提案する システムでは DC リンクキャパシタが理論上不要となるこ とから回路の小型化が可能である。ただし実験では、サー ジ電圧の吸収を目的とした小容量のスナバキャパシタを接 続する。

2 次側インバータは極性切り替え回路として働かせるため, 商用周波数でスイッチングさせるだけでよい。それゆえ, PWM のように高周波のキャリア波を必要とせず,スイッチ ング損失の低減ができる。以上より,提案システムでは, 従来の AC-DC-AC 変換を有する非接触給電システムよりパ ワー密度の向上が可能となる。

<2・2>電力伝送回路とその補償回路 図2に電界形ワ イヤレス給電の伝送回路及び補償回路を示す。ワイヤレス 給電部の本提案システムではモバイル端末の充電アプリケ ーションを想定している。そのため、システム出力は低容 量であり、小型化が可能であることが望ましい。そこで、 小電力用途で使用され、回路の小型化が実現可能な電界型 WPT システムに注目した⁽³⁾。

本回路では、1 次側インバータの出力電圧 $v_p \in C_{f1}$, L_{f1} の 共振回路によって昇圧し、送受電間で生じる電位差を低減 させる。また、電界型の電力伝送回路に対し、 L_1 及び L_2 の インダクタを1次、2次側の双方に直列接続し、直列補償を 行う。これにより、負荷によらず出力電圧が一定になり、 入力と等価な出力を常に得ることが可能となる。

3. 実験結果

<3・1>動作検証 表1に設計した実機のパラメータを 示す。また,図3に作成した実機において,定格100 Vで

図 1 提案する商用周波数出力が可能なシステム Fig. 1. Proposed system capable of utility frequency output.

抵抗負荷 100 Ωを接続して動作させたときの入出力電圧及 び電流波形を示す。

図3より、出力電圧及び出力電流でゼロ付近にひずみが見られるが、50Hz 正弦波の概形が得られていることがわかる。 この時に生じるひずみは DC リンクのスナバキャパシタによって電圧がわずかに平滑化され、電圧がゼロまで落ち切らないことが原因である。

この時の伝送電圧波形を図4に示す。図4(a)より,1次側 及び2次側の電圧が商用周波数の全波整流状波形を包絡線 に持つことが確認できる。(b)はこれを拡大した波形を示し ており,矩形波の周波数が設定した415 kHz で得られてい ることが確認できる。よって,提案システムが入力電圧の 全波整流波形に共振周波数から成る高周波を重畳して電力 伝送が行えていることを確認できる。

<3・2>定電圧特性 提案システムが異なる負荷におい ても一定の電圧出力を得られることを確認するために,定 電圧特性を検証した。図5に負荷抵抗を変動させた際の出 力電圧実効値をまとめた結果を示す。この結果より,負荷 変動に起因した電圧変動は0.1p.u.程度であり,負荷によら ずほぼ一定の電圧が得られていることが確認できる。

以上の実機検証の結果から,高周波重畳方式によって商用 周波数出力が可能な WPT システムが実現できることが確 認できた。

	表 1	設計した実機条件
Fable.	1. Desig	gned experimental conditions.

Parameter	Symbol	Value
Input/Output voltage	v_{in} , v_{out}	100 [V]
Power	P _{out}	100 [W]
Output frequency	f_s	50 [Hz]
Snubber capacitor	$C_{dc 1}$, $C_{dc 2}$	1.0 [µF]
Resonant frequency	f_r	415 [kHz]

図 3 提案する WPT システムの動作波形 Fig. 3. Operating waveforms of the proposed WPT system.

謝辞

本研究は東京電力ホールディングス株式会社との共同研 究により実施したものである。

(b) Enlarged voltage waveforms
図 4 提案する WPT システムの伝送電圧波形
Fig. 4. Transmitting voltage of the proposed WPT system.

図 5 システム出力電圧の定電圧特性 Fig. 5. Constant voltage characteristics of the system output voltage.

文 献

(3) D. Vincent, P. S. Huynh and S. S. Williamson, IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 3, no. 2, pp. 211-218, April 2022

S. Zhang, C. Wang and D. Chen, IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8266-8279. (2022)
S. Samanta and A. K. Rathore, IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5565-5577. (2018)