ハルバッハ巻線構造を適用した伝送コイルによる ワイヤレス給電システムの漏えい磁界低減

山縣 一輝*, 日下 佳祐 (長岡技術科学大学)

Reduction in Leakage Electromagnetic Field using Transmission Coils with Halbach Winding on Wireless Power Transfer

Kazuki Yamagata, Keisuke Kusaka (Nagaoka University of Technology)

1. はじめに

近年,電動車両の普及を促進するためワイヤレス給電シス テムの実用化に向けた検討が進められている。本技術により, 電動車両使用者は充電ケーブルを接続することなく車両の 充電が可能となるため利便性が改善される期待がある。しか し,ワイヤレス給電には電力伝送時に伝送コイル周囲に漏え い磁界が発生する問題がある。漏えい磁界については人体防 護の観点からガイドラインが定められており,実用化にあた っては本規格を満足するよう漏えい磁界を抑制する必要が ある⁽¹⁾。そこで本研究では、ハルバッハ巻線構造を伝送コイ ルに適用することで漏えい磁界の低減が可能であることを, 実機試験により実証したので報告する。

2. ハルバッハ巻線構造を適用した伝送コイル

ハルバッハ巻線構造は、磁石の片側のみに磁界を発生さ せることが可能な磁石配置(ハルバッハ配列⁽²⁾)を巻線によ り再現したものである。図1にハルバッハ巻線構造を適用 したコイルの断面図を示す。ハルバッハ巻線構造では、コイ ル断面から見て上下方向に磁界を発生させる巻線に加えて 左右方向に磁界を発生させる巻線を追加する。本巻線によ り、発生する磁界をコイルの片側に集中させることができ る⁽³⁾。

図2 にハルバッハ巻線構造を適用した伝送コイル構造を 示す。本検討では、ワイヤレス給電の送電側と受電側の伝送 コイルをハルバッハ巻線構造として、伝送コイル間に磁界 を集中させることで、周囲に漏えいする磁界を低減する。

Fig. 1. Section diagram of a coil with Halbach winding structure.

3. 電磁界解析による漏えい磁界低減効果の検証

漏えい磁界の低減効果を検証するため、電磁界解析ソフト(JMAG)による漏えい磁界の評価を行った。モデルは、 実際のコイルをスケーリングして作成したものを対象とし、 比較のためハルバッハ巻線構造を適用したコイルと、同サ イズのスパイラルコイルを用意した。なお、両モデルにおけ る送電側及び受電側の伝送コイルに与える電流値は同一と し、送電側を 2.44 Arms、受電側を 2.75 Arms とした。

図3 に電磁界解析における漏えい磁界の評価ポイントを 示す。本測定点も伝送コイルと同様にスケーリングしたも のであり,実システムにおいて,車両内部及び車両近傍の人 体位置を想定して決定した。

図 3 漏えい磁界評価ポイント Fig. 3. The evaluation point of leakage electromagnetic field. 図4に電磁界解析によって得られた,スパイラルモデル とハルバッハ巻線モデルの各測定ポイントにおける磁束密 度の解析結果を示す。図4に示す通り,ハルバッハ巻線モ デルでは全ての測定ポイントでスパイラルモデルより磁束 密度が低下し,平均で約48%低減できることが確認できる。 これより,伝送コイルに同振幅の電流を通流させた場合,ハ ルバッハ巻線構造の適用により伝送コイル周辺の漏えい磁 界が低減可能であることを確認した。

4. 漏えい磁界低減効果の実機検証

4 - 099

図5に実機試験用の伝送コイルを示す。実験においても、 漏えい磁界の低減効果を検証するため、従来構造としてス パイラル構造を有する伝送コイルと比較を行う。これらの 伝送コイルはプリント基板上に作成され、端子により巻線 構造を変更可能なようにすることで、提案構造と従来構造 を同一の基板で実現した。伝送コイルの巻き数は送電側と 受電側で同一としスパイラルコイルを 25turn、ハルバッハ 巻線コイルについてはコイル断面から見て上下方向に磁界 を発生させる巻線は端部を 10turn、中央部を 15turn、左右方 向に磁界を発生させる巻線は10 turnとした。なお、伝送電 力は 500W (スパイラルコイル接続時)とし、実験システム の共振周波数の都合から、ハルバッハ巻線適用時の伝送周 波数を 86kHz、スパイラル巻線適用時の伝送周波数を 96kHz とした。

図 6 に実機試験によって得られた,スパイラルコイルと ハルバッハ巻線コイルの各測定ポイントにおける磁束密度 の測定結果を示す。本試験では,両システムで送電側及び受

図 5 美機試験用伝送コイル Fig. 5. The transmission coils for experiment.

図 6 各測定点における磁束密度の測定結果 Fig. 6. Measurement results of magnetic flux density at each measurement point.

電側の伝送コイルに供給する電流振幅を同一とし,図3に 示す各ポイントの磁束密度を電磁場測定プローブ(ELT-400 磁界暴露レベルテスタ)により測定した。電流値と測定ポイ ントは電磁界解析実施時と同一条件である。

図 6 に示す通り、ハルバッハ巻線コイルでは全ての測定 ポイントでスパイラルコイルより磁束密度が低下し、平均 で約 22%低下していることが確認できる。以上より、伝送 コイルに通流する電流値が同一の場合、ハルバッハ巻線構 造の適用により伝送コイル周辺の漏えい磁界が低減可能で あることを実験により示した。

5. まとめ

本研究では、ワイヤレス給電システムの伝送コイルに対 してハルバッハ巻線構造を適用した場合の伝送コイル周辺 の漏えい磁界低減効果について、電磁界解析と実機試験に より検証した。検証の結果、伝送コイルに通流する電流値が 同一の場合、ハルバッハ巻線構造を適用した伝送コイルで は伝送コイル周辺の磁束密度がスパイラルコイルに対して 抑制できることを確認した。

文 献

 International Commission on Non-Ionizing Radiation Protection (ICNIRP), "ICNIRP GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC AND MAGNETIC FIELDS (1HZ – 100 kHZ)", (2010)

- (2) K. Halbach, " Design of Permanent Multipole Magnets with Oriented Rare-Earth Cobalt Material ", Nuclear Instruments & Methods, vol. 19, no. 1, pp. 1-10, (1979)
- (3) H. Kim, K. Hwang, J. Park, D. Kim and S. Ahn, " Design of single-sided AC magnetic field generating coil for wireless power transfer ", in 2017 IEEE Wireless Power Transfer Conference (WPTC), pp. 1-3, (2017)