ISOP型 Solid-State Transformer の 回路構成によるコモンモードノイズの比較 ^{菊地 尚斗*} 日下 佳祐 伊東 淳一 (長岡技術科学大学)

Comparison of Common-Mode Noise with Solid-State transformer based on ISOP configuration Naoto Kikuchi^{*}, Keisuke Kusaka, Jun-ichi Itoh, (Nagaoka University of Technology)

This paper discusses the common-mode noise of the solid-state transformer (SST) based on the input-series-output-parallel (ISOP) configuration. The ISOP configuration has a complex common-mode current path because of the increased parasitic component of switching devices. Power factor correction (PFC) and DC/DC converter is modeled with a common-mode equivalent circuit in order to measure the characteristic of common-mode current. The common-mode noise is compared between a converter with the chopper cells and diode bridge rectifier, and a converter with full-bridge cells. The simulation result shows that common-mode noise is reduced 11 dB μ A at 100 kHz with PWM rectifier compared to chopper cell PFC.

キーワード: Solid-state Transformer, ISOP 接続, コモンモードノイズ, EMI, コモンモード等価回路 (Solid-state Transformer, ISOP connection, common-mode noise, EMI, common-mode equivalent circuit)

1. はじめに

近年,再生可能エネルギーのさらなる導入が検討されて おり、スマートグリッドや直流配電システムへの関心が高 まっている。このようなシステムを構成する上で,双方向 の電力制御や,無効電力補償等の機能を有する Solid-state transformer (以下,SST)が必要となる⁽¹⁾⁻⁽³⁾。SST は商用周波 数と高周波間の変換を担う電力変換器と高周波トランスで 構成されており、電力変換回路を含めてもトランスの高周 波化により回路体積の小型化や高パワー密度化が可能とな る⁽⁴⁾。SST の回路トポロジーとしては,低耐圧,低オン抵抗 のデバイスを適用するために,複数のセルを入力側直列・ 出力側を並列に接続(以下,ISOP 接続)するマルチセル構成 が盛んに研究されている⁽⁵⁾⁻⁽⁶⁾。

電力変換器を電力系統に接続する場合,系統側に流出す るノイズ量の限度値が国際無線障害特別委員会(CISPR)によ って定められている^の。本規格を満足するためには,系統へ の接続段にノイズフィルタを設置し,外部へのノイズの流 出を抑制する必要がある。しかしながら,マルチセル構成 では多数のスイッチングデバイスを使用するため,浮遊容 量を介して流れるコモンモード電流の経路が複雑化し,回 路トポロジーの違いがコモンモードノイズに与える影響が 不明確である。

ISOP 接続を用いた一般的な回路方式として,各セルに PWM 整流器,共振 DC/DC コンバータを有した回路方式が ある⁽¹⁶⁾。本回路は双方向動作可能であるが,入力段のセル は単相ブリッジ構成となるため 4 個の素子が必要となる。 さらに絶縁用 DC/DC コンバータを含めると,10 個の素子が 必要となる。一方文献(3)では,全セル共通のダイオードブ リッジと,入力段をチョッパセルとしたセルを用いた回路 方式が提案されている。本回路では,1セルあたり8個の素 子で構成されるため,文献(16)の回路と比べデバイスの浮遊 容量を減らすことができる。しかしながら,ダイオードブ リッジと直列接続されたセルの間にノイズフィルタを適用 できない。これにより,ダイオードブリッジとヒートシン クの浮遊容量を介してコモンモードノイズの流入する懸念 がある。

そこで本論文では,PWM 整流器を各セルに有する方式(以 下,単相ブリッジセル方式)と,全セル共通のダイオードブ リッジとチョッパセルからなる回路方式(以下,チョッパセ ル方式)を使用し,コモンモードノイズについて比較検討を 行う。まず,各方式における PFC 回路と共振型 DC/DC コン バータに分け,浮遊容量を考慮したコモンモード等価回路 を作成し,発生するコモンモード電流の検証を行う。その 後,シミュレーションにより SST に発生するコモンモード 電流を取得し,等価回路上の電流の周波数特性と比較する ことで各方式におけるコモンモード電流の特性の比較を行 う

2. 回路システム構成及び制御ブロック

〈2・1〉 システム構成

図1にチョッパセル方式をベースとした SST の回路構成 を示す。チョッパセル方式は全セルで共通の高圧ダイオー ドブリッジと昇圧チョッパで構成されており、入力電流を 全波整流状に制御することで力率改善動作を行う。なお、 昇圧インダクタ L_bを上下配線に分けて配置する場合は L_b/2 とする。共振型 DC/DC コンバータは1次側に接続されるコ ンデンサ C_sと共振インダクタ L_sによる直列共振を使用し、 共振周波数よりも高い周波数で動作させ、デューティ 50% でオープンループ駆動することで、ターンオン時の ZVS を 達成する。これらを1つのセルコンバータとし、ISOP 接続 により多段化する。

図2に単相ブリッジセル方式 PFC と共振 DC/DC コンバー タをベースにした SST を示す。本回路では、各セルがフル ブリッジ構成となったことで正負電圧を出力可能であるこ とから、入力電流を直接正弦波状に制御する。なお、PFC 回路部のコモンモードノイズ低減効果を比較するため、 DC/DC コンバータ部は共通の構成とする。

〈2・2〉 制御構成

図3にチョッパセル方式PFCを用いたSSTにおける電流 制御系を示す。本制御は昇圧インダクタの電流制御を行い, 入力側力率を改善する。系統電圧からPLLにより入力電圧 の位相情報を取得し,入力電流指令値を生成する。PI制御 により出力された操作量は全セルが出力する電圧の総和と なるため,セル段数 m で除算した電圧が各セルの出力電圧 指令値となる。その後,各セルのDCリンク電圧で除算する ことでデューティの算出を行う。その後,位相シフト三角 波キャリアを用いてゲート信号を決定する。

図4に単相ブリッジセル方式 PFC を SST における電流性 制御系を示す。本制御も同様に入力電力の力率を改善する ために昇圧インダクタを系統電圧に同期した正弦波状の電 流となるように制御する。デューティの算出後,ユニポー ラ変調を行いゲート信号が決定する。

3. ISOP 構成でのコモンモードノイズ

(3・1) チョッパセル方式 PFC のコモンモード等価回路 本節では, SST のコモンモード電流を評価するため, PFC, 共振 DC/DC に分けてコモンモード等価回路の作成し,電流 の周波数特性を比較する。

図 5(a)に ISOP 接続した 2 セル構成の SST におけるチョッ パセル方式 PFC 回路を示す。本回路では、出力と対地間の 浮遊容量を C_{de-out} を考慮し、スイッチング時の電圧変動によ り流れるコモンモード電流 I_{com}を測定する。また、コモンモ ード等価回路を作成するため回路上の受動素子を上下対称 に配置している。図 5(b)に 2 段チョッパセル方式 PFC 回路

Fig. 4 Control diagram of proposed method in single-phase SST with PWM rectifier.

におけるコモンモード等価回路を示す。本回路では、2つの レグを有するため、2つのコモンモード電圧源 Vcom_cell1, Vcom_cell2 が発生する。コモンモード電圧源 Vcom の関係は式(1) より表せる。

$$V_{com} = \frac{V_p + V_n}{2} \tag{1}$$

ここで、*V_p* は対地から p 点までの電位、*V_n* は対地から n 点までの電位とする。電位変動が発生する各レグの中点 p と n 点において対地からの電位を計測し、式(1)より *V_{com_cell}* を導出した。また、コモンモード電流経路より、昇圧イン ダクタ *L_b*/2 は 2 並列に接続されているため、等価回路上で は、*L_b*/4 としている。同様に、各セルの出力コンデンサの容 量は 2*C_{dc}* が 2 並列接続されているため、等価回路上では 4*C_{dc}* としている。GND と浮遊容量間に電位差が発生することで、 上下配線間にコモンモード電流として同相の共振電流が流 れる。

(3・2) 単相ブリッジセル方式 PFC のコモンモード等価 回路

図 6(a)に 2 段 SST における単相ブリッジセル方式 PFC 回 路を示す。本回路でも同様に配線とグランド間の浮遊容量 *C*_{dc out} を考慮している。

図 6(b)に 2 段単相ブリッジセル方式 PFC 回路におけるコ モンモード等価回路を示す。コモンモード電圧源 V_{com_rec} は 対地からみた各レグの中点 $p \ge n$ の電位を計測し,式(1)よ り導出した。本回路では、4 つのレグを有するため 2 つのコ モンモード電圧源としてみなすことができる。

〈3·3〉 PFC におけるコモンモード電流の周波数解析

図7にチョッパセル方式 PFC におけるコモンモード電流 の周波数解析を示す。本周波数解析では、PFC をスイッチ ング周波数6.6 kHz で動作させ、コモンモード等価回路にお ける電流 Icomについて計測した。PFC 回路は周波数184 kHz 時において113 dBµA のノイズピーク値を持ち、コモンモー ド電流の共振周波数が184 kHz であることが確認できる。

図8に単相ブリッジセル方式PFCにおけるコモンモード 電流の周波数解析結果を示す。チョッパセル方式構成と同 様に周波数184 kHz 時においてノイズレベルピーク値104 dBµA を持ちコモンモード電流の共振周波数成分を確認で きる。

〈3·4〉 共振 DC/DC 部のコモンモード等価回路

図 9(a)に共振 DC/DC 部のコモンモード等価回路を示す。 本回路では, 配線と GND 間の浮遊容量 C_{mp}とトランスの 1 次側, 2 次側間の巻き線間浮遊容量 C_nを考慮する。

図 9(b)共振 DC/DC コンバータのコモンモード等価回路を 示す。コモンモード電圧源として V_{com_pri}を1 次側 DC バス 間のコモンモード電圧, V_{com_sec}を2 次側 DC バス間のコモン

Fig. 7 Frequency analysis results of I_{com} in the propagation model for chopper cell PFC.

モード電圧としている。共振インダクタ $L_{s}/2$, 共振コンデン サ $2C_{s}$, 巻き線間浮遊容量 $2C_{tr}$ は 2 並列に接続されているた め, 等価回路上ではそれぞれ $L_{s}/4$, $4C_{s}$, 巻き線間浮遊容量 C_{tr} として表すことができる。また,トランス部の漏れインダ クンスは短絡しているため,コモンモード経路に表われな いため省略している。

<3·5> DC/DC 部におけるコモンモード電流の周波数解析

図 10 に共振型 DC/DC コンバータにおけるコモンモード 電流の周波数特性を示す。本周波数解析では、DC/DC コン バータを 21 kHz のスイッチング周波数でオープン動作さ せ、コモンモード等価回路における電流 *Icom* について計測し た。330 kHz 時に 108 dBµA のピーク値を取ることを確認し、 電流の共振周波数が 330 kHz であることを確認した。また、 PFC 回路とは異なり、トランス部の巻き線間容量が高いた め、PFC 回路より共振周波数が高い。以上より、本等価回 路モデルより、PFC 回路部の共振周波数は 180 kHz、共振 DC/DC 部の共振周波数が 330 kHz であることが分かった。

4. シミュレーション結果

〈4·1〉昇圧インダクタを対称配置したコモンモード電流の周波数解析の比較

表1 にシミュレーション条件を示す。本シミュレーショ ンではまず,昇圧インダクタの配置によりノイズ低減効果 の比較を行う。

図11に昇圧インダクタの配置によるコモンモード電流の 周波数解析した比較を示す。インダクタを対称配置するこ とで100 kHz 付近の周波数帯を除く周波数成分においてノ イズレベルの低減を確認できる。また、10 MHz 付近におい ては最大 60 dBµA の低減を確認できる。インダクタを片側 のみに配置することで、PFC のスイッチング動作時に対地-ドレイン間の電位が急変に変化し、コモンモード電流が流 れる。

また,図11においてコモンモード等価回路上では,基準 点からみたとき,片側配置の昇圧インダクタは閉回路を構 成しないため,共振点が表れないと考える。

〈4・2〉チョッパセル方式 PFC, 単相ブリッジセル方式 PFC を使用した SST のコモンモード電流の周波数解析の比 較

本シミュレーションでは,チョッパセル方式 PFC,単相 ブリッジセル方式 PFC を使用した SST についてのコモンモ ード電流の比較を行う。

図 12 にチョッパセル方式 PFC, 単相ブリッジセル方式 PFC を使用した SST のコモンモード電流の比較を示す。そ れぞれの回路方式にて、2 つのノイズピーク値を持つことが 確認でき、共振周波数を 2 点持つことが分かる。チョッパ セル方式では、105 kHz 時に 123 dBµA、390 kHz 時に 51 dBµA となる。同様に、単相ブリッジセル方式 PFC では 105 kHz 時に 123 dBµA、330 kHz 時に 64 dBµA となることが確認で

Fig. 8 Frequency analysis results of *I*_{com} in the propagation model for PWM rectifier.

(a) Circuit configuration of resonant DC/DC converter.

(b) Equivalent circuit of resonant DC/DC converter. Fig. 9 Common-mode noise propagation model for resonant DC/DC converter.

きる。これは PFC 回路および共振 DC/DC 部の等価回路イン ピーダンスの共振により発生している。

また,図7,8の結果から150kHz-330kHz帯では,PFCに

よる周波数特性が表れ,330 kHz-帯からは共振 DC/DC の周 波数特性が表れている。これは、高周波トランスの巻き線 間浮遊容量が大きく、PFC 側の浮遊容量が小さいため、1 kHz – 150 kHz 成分は PFC 側の浮遊容量を通過し、150 kHz-成分 は巻き線間容量に電流が抜けるものと考える。図 10 の共振 周波数 330 kHz において、ノイズのピークが表れることから も共振 DC/DC よるノイズが支配的であることが分かる。両 回路方式を比較すると単相ブリッジセル方式 PFC を用いる ことで 100 kHz 帯では、11 dBµA の低減を確認し、10 MHz 付近では、21 dBµA の低減効果を確認した。

5. 結論

本稿では、ISOP型SSTについて、チョッパセル方式と単 相ブリッジセル方式におけるコモンモード電流の比較を行 った。まず、セルコンバータを構成する PFC 回路、共振 DC/DC部に分けて考え、それぞれのコモンモード等価回路 を作成し、コモンモード電流の周波数特性を明らかにした。 シミュレーション結果より、両方式におけるコモンモード 電流の共振周波数は100 kHz, 300 kHzにてピークを持つこ とが確認でき、PFC回路、共振 DC/DCの共振周波数成分で あることを確認した。両回路方式を比較し、単相ブリッジ セル方式 PFCを用いることで100 kHz帯では、11 dBµAの 低減を確認し、10 MHz付近では、21 dBµAの低減効果を確 認した。

今後は LISN を含めた雑音端子電圧を取得し, ディファレ ンシャルモードノイズとコモンモードノイズに分離し, 比 較を行う。また, 実機実験においてもコモンモードノイズ の評価を行い, シミュレーションとの周波数特性と比較を 行う予定である。

文 献

- J. W. Kolar and G. Ortiz: "Solid-State-Transformers: Key Components of Future Traction and Smart Grid Systems", IPEC 2014, pp.22-35 (2014)
- (2) H. Hwang, X. Liu, J. Kim and H. Li: "Distributed Digital Control of Modular-Based Solid-State Transformer Using DSP+FPGA" IEEE Trans., Vol.60, No.2, pp.670-680 (2013)
- (3) Jun-ichi Itoh, Kazuki Aoyagi, Keisuke Kusaka, Masakazu Adachi, Development of Solid-state Transformer for 6.6-kV Single-phase Grid with Automatically Balanced Capacitor Voltage, IEEJ Journal of Industry Applications, 2019, 8 巻, 5 号, p. 795-802.
- (4) J. E. Huber and J. W. Kolar, "Volume/weight/cost comparison of a 1MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer," in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Pittsburgh, PA, USA, Sep. 2014, pp. 4545–4552.
- (5) T. M. Parreiras, A. P. Machado, F. V. Amaral, G. C. Lobato, J. A. S. Brito and B. C. Filho, "Forward Dual-Active-Bridge Solid-State Transformer for a SiC-Based Cascaded Multilevel Converter Cell in Solar Applications," in IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6353-6363, Nov.-Dec. 2018.
- (6) J. E. Huber, J. Böhler, D. Rothmund and J. W. Kolar, "Analysis and cell-level

Table.1 Simulation parameter in SST.		
Input voltage	$V_{\rm in}$	880 V _{rms}
Rated Output Power	Pout	20 kVA
Rated output voltage	Vout	340 V
Switching frequency of PFC	$f_{\rm sw_pfc}$	6.6 kHz
Resonant frequency	$f_{ m o}$	21 kHz
Number of cells	т	2
Boost inductor	$L_{\rm b}$	5 mH(4.1%)
Primary side capacitor	C_1	120 µ F
Resonant capacitor	$C_{\rm s}$	1.8 µF
Leakage inductor	$L_{\rm s}$	48 µH
Secondary side capacitor	$C_{\rm out}$	2000µF
Trans turns ration	$N_1:N_2$	1.0
parastic capacitor of DC-link capacitor to ground	C_{dc_out}	300 pF
parastic capacitor of DC-bus to ground	C_{mp}	150 pF
Interwinding capacitor	C_{tr}	1170 pF

Fig. 11 Comparison of common-mode noise in SST with symmetric boost inductor and asymmetric boost inductor.

Fig. 12 Comparison of common-mode noise in SST with half bridge PFC and full bridge PFC.

experimental verification of a 25 kW all-SiC isolated front end 6.6 kV/400 V AC-DC solid-state transformer," in CPSS Transactions on Power Electronics and Applications, vol. 2, no. 2, pp. 140-148, 2017.

- (7) IEC CISPR 11 Edition.5.0:Industrial, Scientific And Medical Equipment -Radio-Frequency Disturbance Characteristics - Limits And Methods Of Measurement, IEC Standard, May, 2009.
- (11) P. Kong, S. Wang and F. C. Lee, "Common Mode EMI Noise Suppression for Bridgeless PFC Converters," in IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 291-297, Jan. 2008.

- (12) J. E. Huber, J. Böhler, D. Rothmund and J. W. Kolar, "Analysis and cell-level experimental verification of a 25 kW all-SiC isolated front end 6.6 kV/400 V AC-DC solid-state transformer," in CPSS Transactions on Power Electronics and Applications, vol. 2, no. 2, pp. 140-148, 201
- (13) D. Fu, S. Wang, P. Kong, F. C. Lee and D. Huang, "Novel Techniques to Suppress the Common-Mode EMI Noise Caused by Transformer Parasitic Capacitances in DC–DC Converters," in IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 4968-4977, Nov. 2013.
- (14) M. Shoyama, Ge Li and T. Ninomiya, "Balanced switching converter to reduce common-mode conducted noise," in IEEE Transactions on Industrial Electronics, vol. 50, no. 6, pp. 1095-1099, Dec. 2003.
- (15) J. W. Kolar and T. Friedli, "The Essence of Three-Phase PFC Rectifier Systems—Part I," in IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 176-198, Jan. 2013.
- (16) A. A. Milani, M. T. A. Khan, A. Chakrabortty and I. Husain, "Equilibrium Point Analysis and Power Sharing Methods for Distribution Systems Driven by Solid-State Transformers," in IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1473-1483, March 2018.
- (17) A. A. Milani, M. T. A. Khan, A. Chakrabortty and I. Husain, "Equilibrium Point Analysis and Power Sharing Methods for Distribution Systems Driven by Solid-State Transformers," in IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1473-1483, March 2018