

論文

溶接電源に向けた N 相インターリーブ降圧コンバータの 制御応答性の検討 ェ 員 橋本 裕志^{*a)} ^{学生員} 桐 嘉伸^{**}

上級会員 伊東 淳一**

Control response of N-phase interleaved buck converter for welding power supply.

Hiroshi Hashimoto^{*a)}, Member, Kashin Kiri^{**}, Student Member, Keisuke Kusaka^{**}, Member, Jun-ichi Itoh^{**}, Senior Member

(2020年12月2日受付, 2021年2月26日再受付)

An N-phase interleaved converter was analyzed here to improve the current control performance of a welding power supply. Consequently, it was found that the collective current control method of the N-phase interleaved circuit has a current control response closing to that of a single-phase converter circuit with N times carrier frequency and 1/N output inductance. This method reduces the accumulated energy of inductance to 1/N and lowers the heat generation of the device, which can contribute to the miniaturization and higher performance of the welding power supply.

キーワード: インターリーブ降圧コンバータ,インダクタ,溶接電源,むだ時間,応答性能 **Keywords**: interleave buck converter, inductor, welding power supply, dead time, response performance

正員日下 佳祐**

1. はじめに

近年のパワー半導体素子の進化や制御 CPU 処理能力の増 大に伴い,アーク溶接電源では,装置の小型化や溶接品質の 向上を目的として,高速応答が求められており,インバータ のスイッチング周波数の向上,サンプリング周期の短縮化 が進んできている⁽¹⁾。一方,自動車やサーバー機器向けなど の大電流 DC 電源回路において,インダクタやコンデンサな どの回路素子の小型化やリプル電流低減,制御性能向上を 目的としたインターリーブ降圧コンバータ回路が検討され ている⁽²⁾⁽³⁾。インターリーブ降圧コンバータは,単相降圧コ ンバータを並列接続し,それぞれのスイッチング位相を意 図的にずらすことによって,出力コンデンサにおける電流 変化を相殺し,電流リプルを低減できる。また電流リプルを 同等とした場合,インダクタのインダクタンスを小さくし て,機器をさらに小型化することができる。

a)	Correspondence to: Hiroshi Hashimoto. E mail:						
	hashimoto.hiroshi@kobelco.com						
*	* 株式会社神戸製鋼所						
	〒651-2271 兵庫県神戸市西区高塚台 1-5-5						
	Kobe steel,Ltd.						
1-5-5, Takatsuladai Nishi-ku, Kobe, Hyogo 651-2271,							
* *	長岡技術科学大学						
	〒940-2188 新潟県長岡市上富岡町 1603-1						
	Nagaoka Univercity of Technology.						
	1603-1, Kamitomioka, Nagaoka, Niigata 940-2188, Japan						

ー般的に多相インターリーブ化によって,等価的なスイ ッチング周波数が上がるため,降圧コンバータの応答性能 が改善すると考えられている。例えばインターリーブ降圧 コンバータのサンプリング周波数を2倍に上げデッドビー ド制御することで応答性能を向上させる方法が提案されて いる⁽⁴⁾。 また,多相インターリーブ降圧コンバータをスラ イディングモード制御することで応答性能を向上させる方 法が提案されている⁽⁵⁾。これらはいずれも出力電圧応答を改 善することを目的としているが,インターリーブ化による 出力インダクタンスの低減効果と目標値応答性と負荷応答 性については十分に検討されていないと思われる。

本論文では十分に高速な制御応答を実現することと,イ ンダクタの低減にはトレードオフがあることを示し,イン ターリーブ化によるメリットを制御の観点から定量的に明 らかにする。さらにインダクタ電流を一括して制御する場 合(一括電流制御)と各インダクタの電流を個別に制御する 場合(個別電流制御)を検討し,同一の設計指針に基づいた場 合,一括電流制御をすることにより応答性が向上すること を明らかにする。

本論文の構成は次のようになっている。まず第2章では 溶接電源の特徴を述べ,多相インターリーブ降圧回路を付 加して溶接電流の制御応答をさらに向上させる回路構成を 示す。第3章では多相インターリーブ降圧回路の詳細動作 を述べ,制御器の設計を示し,応答をボード線図で議論す る。第4章ではシミュレーションによって、多相インターリ ーブ降圧回路のインダクタによる制御応答の違いと電流制 御方法による制御応答の違いを、ボード線図と動作波形で 示す。最後に実験によって、4章のシミュレーション結果の 妥当性を確認する。

2. 溶接電源の構成

図1 に一般的な溶接電源の構成を示す。溶接電源は一次 側インバータによって生成された 40~50kHz の高周波電流 をトランスによって絶縁・降圧し,二次側ダイオードで整流 して溶接電流出力を得る。

溶接電流は溶接トーチを介して溶接ワイヤに供給され, 溶接ワイヤ先端と溶接対象(母材)間でアークを発生し,溶 接ワイヤと母材を溶融させて溶接する。溶接においては、ワ イヤと母材間に発生するアーク長は溶接状態によって大き く変化し、さらにワイヤと母材間は短絡状態からアーク発 生へと瞬時に変化する。このように溶接電源の負荷は非常 に変化の大きい可変抵抗と見なすことができ、負荷の精緻 なモデル化が困難であるため、一般的に制御器には PI 制御 が用いられる。なお負荷変動によって電流が減少しアーク が切れると溶接欠陥が発生するため、出力インダクタのイ ンダクタンスを数10~数100µHに設定して、アーク切れ防 止と目標値応答の両立を図っている。溶接電源は出力段に 平滑コンデンサは適用されず,出力回路は出力インダクタ と溶接負荷の直列接続となる。溶接のさらなる高品質化の ためには、サンプリング周波数およびスイッチング周波数 の高周波化が望まれるが、現在のところ二次側で100kHz程 度までに留まっている(%)。

これに対して,溶接機の応答性や電力効率の改善を目的 として,従来溶接機回路(図1)の出力段に相数Nの多相イ ンターリーブ降圧回路を接続した溶接電源回路が提案され ている^の。図2にその回路構成を示す。本論文では,溶接電 源に多相インターリーブ降圧回路を適用した場合の電流制 御方法や応答性能について明らかにする。

Fig. 2. Welding power supply to be considered.

インターリーブ降圧コンバータ回路仕様と制 御方法

〈3・1〉基本回路と動作 図3に多相インターリーブ降 圧コンバータの基本構成要素である単相降圧コンバータ回 路図と制御ブロック図ならびに制御タイミングチャートを 示す。本回路は出力部に平滑コンデンサを持たず,負荷電流 すなわち出力インダクタ電流を制御する。電流センサで検 出されたインダクタ電流 ILoad は、キャリア三角波の上ピー クのタイミングでサンプル&ホールドされて AD コンバー タを経て制御器に入力される。制御器から出力された電圧 指令 Vref*は、次のキャリア三角波の上ピークのタイミング で更新され比較器に入力されて PWM 信号となる。PWM 信 号はデッドタイムが付与されてゲート信号としてスイッチ ング素子を駆動して電圧 Viが出力される。本論文では、回 路のインダクタンスに着目する。溶接電源において、出力イ ンダクタは電流を安定化させる上で必須であり、狙った目 標値応答と外乱に対する電流安定性を得るためには適切な インダクタンスを設定する必要がある。

インダクタに蓄積されるエネルギーUは、(1)式にて定義 される。

ここで L:インダクタンス, I: 電流

(c)Fundamental timing chart

Fig. 3. Fundamental buck converter.

インダクタンス L の単相コンバータを N 相インターリー ブ化することによりインダクタ1個あたりの平均電流は1/N となるため、インダクタ1個当たりの蓄積エネルギーはリ プル電流分を無視すれば、1/N²となる。従って、N相インタ ーリーブ化におけるインダクタンス L を単相コンバータと 同一とすると、インダクタの総蓄積エネルギーを 1/N とす ることができる。ここで、インダクタのエネルギー密度は一 定と仮定すると、 N相インターリーブのインダクタ総体積 は単相コンバータに比べて1/Nに低減できる。一方,N相イ ンターリーブ化におけるインダクタンスは等価的に並列接 続となるため、一相当たりのインダクタンス L を単相コン バータの N 倍とした場合, インダクタの総蓄積エネルギー は変化せず、インダクタ総体積は単相コンバータ時と同等 となる。さらに等価スイッチング周波数の増加にともない, 1相当たりのインダクタンス L を単相コンバータの 1/N 倍 とした場合,インダクタの総蓄積エネルギーは1/N²となり,

	. (*)		CTI	m .	ILoa
	$Q_{1a} Q_{1b}$	þ	I _{LI}	L	R
T	Converter #1	•			
	F* 1	•	CT ₂	m	
	Q_{2a} Q_{2b}	1	IL2	L	
T	Converter #2	•	CTT.		T
		•	CI3	m	
	$Q_{3a} \qquad Q_{3b}$		I _{L3}	L	
	Converter #3				

Fig. 4. Interleaved buck converter circuit.

(b) Timing chart Fig. 5. Block diagram of individual current control.

インダクタ総体積は単相コンバータ時に比べて大幅に低減 できる。

(3・2) 多相インターリーブ降圧コンバータ回路の動作

前節で示した単相降圧コンバータの多相インターリーブ 化を考える。本論文では基本的な性能評価に主眼を置き,多 相インターリーブの相数 N=3 と設定する。図4に3相イン ターリーブ降圧コンバータの回路図を示す。インターリー ブ降圧コンバータ回路の電流フィードバック制御方法に は、3相各相のインダクタ電流が目標負荷電流の1/3倍にな るよう個別に制御する方法と、インダクタンス電流の合計 である負荷電流が目標値になるように制御する方法があ る。本論文では前者を個別電流制御,後者を一括電流制御と 称することとする。

図5に個別電流制御方式,図6に一括電流制御方式の制 御ブロック図と制御タイミングチャートを示す。

個別電流制御は各相のキャリア三角波(周期 T_s)の上ピー クで各相インダクタ電流をサンプル&ホールドし,目標電 流の 1/3 値との差分を PI 制御器に入力する。得られた制御 出力は次のキャリア三角波の上ピークで更新され三角波と 比較されてゲート信号を得る。一方,一括電流制御では 3 相

(a) Block diagram

(b) Timing chart

Fig. 6. Block diagram of collective current control.

キャリア三角波の全ての上ピークで負荷電流(各インダク タ電流の和)をサンプル&ホールドし,目標電流値との差分 を PI 制御器に入力する。得られた制御出力は次のキャリア 三角波の上ピークで更新されてゲート信号を得る。従い、個 別電流制御のサンプリング周期は Ts, 一括電流制御のサン プリング周期は T_s/3 となる。なお、インターリーブー括電 流制御ではインダクタンス電流の和のみを制御するため, インダクタ・配線経路の抵抗やインダクタンスの差によっ て,各相電流にばらつきが生じる。そこで,各相に負荷電流 の 1/3 が均等に流れるようバランス制御を適用する。本論 文ではバランス制御が一括電流制御応答に与える影響を小 さくするため、各相電流をカットオフ周波数 100Hz のロー パスフィルタで処理してバランス制御の応答を遅くしてい る。そして負荷電流の1/3を目標電流、フィルタ処理された 各相電流をフィードバックとして PI 制御を行い,得られた 各相出力に一括電流制御の PI 出力を加算して PWM 参照信号 を得る。

〈3・3〉 制御器の設計 本論文では多相インターリー ブ降圧コンバータにおける電流の目標値応答と外乱応答を 評価する。制御器には溶接電源で多用される PI 制御を用い るが、制御応答には後述するむだ時間 δが大きく影響する。 各制御方式を評価する上で、共通のゲイン設定指標が必要 となるため、むだ時間を含む PI コントローラのゲイン設定 方法として知られ、アーク炉の分野で比較的多く適用され ているベトラーク法を用いて、PI ゲインを設定する⁽⁸⁾。(2) 式に PI コントローラの伝達関数と、ベトラーク法に基づく パラメータを示す⁽⁹⁾⁽¹⁰⁾。

$$K_p = \frac{T_p}{2\delta \frac{1}{2}} = \frac{L}{2}$$

ここで R_e は制御器から見た等価負荷抵抗値, L_e は制御器 から見た等価出力インダクタンス, δ は制御器におけるむ だ時間である。

これら電流制御における PI 制御器のゲインを検討する。 まず、むだ時間について考える。図 3(c)に示す基本コンバー タ制御におけるむだ時間 δ は電流サンプル&ホールドから 電圧 V_1 出力の中間時点までの時間、すなわちサンプリング 周期 T_s とインバータ出力まで PWM の遅延時間 $T_s/2$ の和と なり $\delta=3T_s/2$ と見なすことができる。次に個別電流制御のむ

	δ	Le	R _e	T_p	K_p		
Sigle p	$3T_s/2$	L	R	L/R	$L/(3T_s)$		
3 phase	Individual current control	$3T_s/2$	L	3 <i>R</i>	L/3R	$L/(3T_s)$	
interleave	Collective current control	5 <i>T</i> _s /6	L/3	R	L/3R	L/(5Ts)	

Table 1. Control parameters.

だ時間 δ は,図 5(b)に示すように、サンプリング周期 T_s と インバータ出力まで PWM の遅延時間 $T_s/2$ の和 $3T_s/2$ とな る。一括電流制御における制御のむだ時間 δ は、図 6(b)に示 すようにサンプリング周期 $T_s/3$ と PWM 遅延時間 $T_s/2$ の和 $5T_s/6$ となる。

なお、個別電流制御と一括電流制御では制御器から見た 出力インダクタンス、負荷抵抗値が異なる。個別電流制御は 各相が独立して動作するため、図7(a)の等価回路となり、制 御器から見た負荷抵抗は3倍となる。一方で一括電流制御 は図7(b)の等価回路となり、制御器から見たインダクタンス は1/3となる。表1に各制御方式の制御パラメータを示す。

表 2 に本論文で性能比較するコンバータの構成と制御方 式および PI ゲイン一覧を示す。本論文では基本性能評価を 目的とするため実験可能な条件として,電源電圧 *E*=100V, キャリア周波数 20kHz,出力インダクタンス 300uH,負荷抵 抗 1 Ωの単相降圧コンバータを基準 (Case A1)とし,基準に 対してキャリア周波数 3 倍・インダクタンス 1/3 倍とした単 相コンバータ (Case A2)との応答特性を比較する。そのう えで 3 相インターリーブ降圧コンバータの個別/一括電流 制御それぞれについて,インダクタンス 3 倍(Case B1/C1), インダクタンス同等(Case B2/C2)とインダクタンス 1/3 倍 (Case B3/C3)の応答特性を比較する。

4. シミュレーション

〈4・1〉 周波数応答特性 表 2 に示した回路比較条件 において、各回路の電流目標値応答と電流外乱応答をシミ ュレーションによって比較評価する。回路シミュレータは *PSIM ver10* (POWERSIM)を用いた。

目標値応答は、 目標電流として正弦波交流を重畳させた 直流電流指令を与え、そのときの負荷電流レベルと目標電 流レベルの比率を評価した。負荷電流はスイッチングリプ ル電流を含むために高調波解析処理して目標電流周波数成

(a) Individual current control
(b) Collective current control
Fig. 7. Interleaved converter equivalent circuit.

Table 2.	Comparison	conditions
----------	------------	------------

	Circuit type	Carrier		Output	PI Controller gain	
Case		frequency	0	inductor	T_p	Kp
A1	Sigle phase buck	20kHz	75µs	300µH	300µs	2.0
A2	converter.	60kHz	25µs	100µH	100µs	2.0
B1	3 phase interleave, Individual current	20kHz	75µs	900µH	300µs	6.0
B2				300µН	100µs	2.0
B3	control			100µH	33.3µs	0.667
C1	2 phase interleave	20kHz	41.6µs	900µH	300µs	3.6
C2	Collective current			300µH	100µs	1.2
C3	control			100µH	33.3µs	0.4

4

分を抽出し、目標電流と比較した。また目標電流は実験装置 の能力に応じた電流・周波数範囲として、DC5A に周波数 100Hz~9kHz,振幅 3A の正弦波を重畳させた電流指令を与 えた。外乱については、第2章で述べたように溶接電源のア ーク負荷は非常に変化の大きい可変抵抗と見なすことがで きる。本シミュレーションでは、抵抗値を変化させる代わり に負荷抵抗と直列に交流電圧源を挿入し、その交流電圧の 周波数を変化させた場合の負荷電流交流実効値の変化を外 乱応答特性とした。負荷電流目標値は DC9A を与え、交流 電圧は負荷1Ωから2Ωへの外乱変動に相当する4.5V±4.5V の正弦波交流電圧を与えた。

図 8(a)に単相コンバータと個別電流制御方式の目標値周 波数応答シミュレーションの比較結果を示す。単相コンバ ータの場合,基準とした A1 に対してキャリア周波数 3 倍, インダクタンス 1/3 とした A2 は応答が約 3 倍向上してい る。これに対してインターリーブ個別電流制御を適用する と,出力インダクタンスを 3 倍とした B1 が A1 と同等特性, インダクタンスが A1 同一の B2 は,周波数 2kH z 以下では A2 同等の目標値応答を示すが,周波数が増加するにつれて むだ時間 δが影響し応答は悪くなる。なお,個別制御 B3 は PI 制御の時定数に対してむだ時間 δが 2 倍以上と大きく, 制御が発散するため,図 8(a)には示していない。

次に、図 8(b)に単相コンバータと一括電流制御方式の目標 値応答シミュレーション結果を示す。出力インダクタンス を A1 の 3 倍とした C1 は個別制御 B1 と同様に A1 と同等 特性となる。これに対してインダクタンスが A1 と同一の C2 は、A2 に近い特性となり、個別電流制御 B2 よりも目標値 応答特性が優れることを示している。さらにインダクタン スを A1 の 1/3 とした C3 は、C2 よりも高周波領域の応答性 能が向上する。

(a)Single converter & individual current control interleave converter

(b)Single converter & collective current control interleave converter

Fig. 8. Simulation result of the reference tracking response.

次に図 9(a), 9(b)にそれぞれ単相コンバータと個別電流制 御方式および,単相コンバータと一括電流制御方式の外乱 応答シミュレーション結果を示す。外乱応答特性はゲイン が小さいほど外乱の影響を受けにくく,望ましい特性であ る。図 9(a)から,単相コンバータ A2 は 2kHz 以下で A1 よ りも外乱の影響を受けにいくく,2kHz 以上では外乱影響を 受けやすいことが示された。これは A2 のむだ時間が A1 の 1/3 であるため低周波側の外乱応答特性が 10dB 程度向上す る一方で,インダクタンスが 1/3 と小さいため高周波側で外 乱応答特性が 10dB 程度悪化すると考えられる。

インターリーブ個別電流制御を適用すると、インダクタ ンスが A1 の 3 倍である B1 は A1 とほぼ同じ外乱特性とな り、インダクタンスが A1 同等である B2 は A1 よりも外乱 の影響を受けやすいことが示された。これは、インターリー ブ個別電流制御の等価回路(図 7 (a))に示すように、イン ターリーブ個別制御では負荷側から見たインダクタンスは 1/3 となるため、B1 の負荷側から見たインダクタンスは 300µH となるのに対して、B2 のインダクタンスは 100µH と 小さくなることが高周波側特性に影響していると考えられ る。また A1, B1, B2 は、むだ時間が同じであるため、低周 波側の外乱特性は同等となる。

ー方でインターリーブー括電流制御を適用すると、イン ダクタンス3倍のC1は、負荷側から見たインダクタンスが 300µHとA1同等となる一方で、むだ時間はA1の5/9倍と なるためA1よりも外乱の影響を受けにくい。またインダク タンス同等のC2はC1と同じ理由で低周波側ではA1より も外乱影響受けにくいが、負荷側から見たインダクタンス は100µHと小さいため高周波側で外乱影響を受けやすい。 なおインダクタンス1/3にしたC3は負荷から見たインダク タンスが 33.3µHとさらに小さいため、高い周波数域で他条

(a)Single converter & individual current control interleave converter

(b) Single converter & collective current control interleave converter

Fig. 9. Simulation result of the disturbance response.

件に比べてさらに外乱影響を受けやすくなる。

これらの結果から、インターリーブー括電流制御コンバ ータは、キャリア周波数3倍、インダクタンス1/3とした単 相コンバータの目標値応答・外乱応答性能には及ばないも のの、それに近い応答性能が得られることが期待される。

〈4・2〉 ステップ応答特性 本節では最も応答特性の良い単相コンバータ A2 と, それに近い特性が期待されるイン ターリーブー括電流制御 C2 のステップ応答を確認する。

目標値応答は、負荷目標電流 (I_{ref}) を 9A→17A→9A とス テップ状に変化させたときの負荷電流(I_L)応答を、外乱応答 は負荷抵抗を 2Q→1Q→2Qと変化させたときの負荷電流 (I_L)応答をシミュレーションにて計算した。なお負荷電流波 形はスイッチングリプルが重畳して比較が困難なため、い ずれの負荷電流値とも制御器内のサンプル&ホールド値を 示している。

図 10(a)に目標値応答,図 10(b)に外乱応答のシミュレーション結果を示す。図 10 の通り,電流一括制御 C2 は目標値・ 外乱応答ともに単相コンバータ A2 に近い性能を示すもの の,A2 の方が速い応答であることがわかる。これは前節で 述べたように,A2 のむだ時間 δ =25µs に対してインターリ ーブー括電流制御 C2 のむだ時間 δ =41.6µs が大きいことが 原因と考えられ,応答性向上にはインターリーブ回路にお いても,むだ時間の短縮が重要であることが示唆される。

5. 実験結果

〈5・1〉 実験装置・方法 前章で示した回路方式の有 効性を検証するために,小型の評価実験装置を用いて試験 を行った。表3に実験装置の仕様および動作条件を示す。

実験ではシミュレーションと同一回路構成・制御方式に おける目標値周波数応答とステップ応答,外乱ステップ応 答を測定した。目標値周波数応答は,目標値 Lef として直流

(b) Disturbance response A2&C2

Fig. 10. Simulation result of the step response.

5A に 100Hz~9kHz, 振幅 3A の正弦波電流を重畳させたと きの負荷電流振幅比率をシミュレーションと同一方法で記 録した。目標値ステップ応答は,時刻0にて 9A→18A およ び 18A→9A のステップ状の目標値 I_{ref} を与えたときの,制 御器でサンプルホールドした負荷電流値を記録した。

外乱ステップ応答は、目標値 $I_{ref}=9A$ 一定として、負荷抵抗を時刻0にて $2\Omega \rightarrow 1\Omega$ および $1\Omega \rightarrow 2\Omega$ と変化させたときの制御器内のサンプル&ホールド値を記録した負荷電流値を記録した。

〈5・2〉実験結果 図 11 に各制御方式における目標値 周波数応答の実験結果と,同条件でのシミュレーション結 果を示す。図 11(a)の単相コンバータは条件 A1, A2 とも,

Table 3. Design specifications

Quantity	Symbol	Value
Input voltage	Ε	40V
Load resistance	R	1Ω
Carrier frequency	-	20kHz
Phase	Ν	3
Output inductor	L	100uH,330uH,900uH

f(Hz)

(c) Collective current control interleave converter Fig. 11. Experimental result of the reference tracking response.

シミュレーションと同じ特性を示すことが確認された。図 11(b)のインターリーブ個別電流制御および図 11(c)のインタ ーリーブー括電流制御についても、実験結果とシミュレー ション結果はほぼ一致しており、シミュレーション結果の 妥当性を確認した。B2 および C2 はシミュレーション結果 に比べて実験結果の応答性がやや劣っている原因は、実験 で用いたインダクタのインダクタンスが大きく、さらに負 荷抵抗や配線のインダクタンスの影響を受けているためで ある。

次に目標値ステップ応答と外乱ステップ応答について, 同等性能が期待される A2 と C2 の実験結果を比較した。図 12 に A2, C2 制御方式における目標値ステップ応答の実験 結果,図13 に A2, C2 制御方式における外乱ステップ応答 の実験結果を示す。いずれの応答波形もシミュレーション と実験結果はほぼ一致しており,シミュレーションの妥当 性が確認された。

〈5・3〉各方式の比較 本論文では、表2に示す条件に て、単相コンバータに対して、インターリーブ個別制御、イ ンターリーブー括制御の電流制御方式の違い、ならびに出 カインダクタのインダクタンス値が電流制御応答に与える 影響について比較検証を行ってきた。前節で述べた実験結 果によってシミュレーション結果の妥当性が確認できたの で、本節ではシミュレーション結果に基づいて各方式の比 較を行う。

単相コンバータ A1 を基準と考えた場合, むだ時間が小さ い A2 の方が目標値応答・外乱応答性能ともに優れている。 これに対してインターリーブ個別電流制御 B1 は A1 と同等 性能であり, B2 は A2 よりも目標値応答・外乱応答性能が 劣る。またインターリーブー括電流制御 C1 は A1 と同等性 能であるが, C2 は A2 よりもやや劣る目標値応答・外乱応 答性能が得られ, C3 は目標値応答性能に優れるものの外乱 応答性能が大きく劣る結果となった。

次に溶接電源の実現性の観点から、コンバータ体積、特に コンバータ体積の大部分を占めるインダクタ体積と半導体 デバイスの温度に着目すると、単相コンバータのキャリア 周波数をN倍・インダクタンス 1/Nとした A2 に比べ、イン ターリーブー括電流制御 C2 は、インダクタ総体積は同等で あるが、キャリア周波数が増加しないためデバイスの総発 熱量は A2 よりも大幅に低くなる。これは溶接電源のように 大電流が必要なコンバータにおいては特に優位性がある。 表4に各回路方式の性能比較結果を示す。

以上を総括すると、目標値応答・外乱応答性能では A2 が 望ましいものの、半導体デバイスのスイッチング速度に限 界があるため、大電流出力が必須である溶接電源の高応答 化を実現するコンバータ回路方式は、インダクタンスを維 持しつつインターリーブー括電流制御する方式 C2 が最適と なる。

Table 4. Comparison result.

		type Carrier frequency	rier Output ency inductor	Result					
Case	Circuit type			Target response	disturbanc e response	Inductor volume	Power device temperature	Total	
A1	Sigle phase	20kHz	300uH	С	А	В	В	в	
A2	converter	60kHz	100uH	А	А	А	С	в	
B1	3 phase interleave, Individual current control	3 phase interleave, Individual		900uH	С	А	в	В	В
B2			20kHz	300uH	В	С	А	В	В
В3			100uH	-	-	-	-	-	
C1	3 phase interleave, Collective current control		900uH	С	A+	В	В	B+	
C2		20kHz	300uH	A-	A-	А	в	A-	
C3			100uH	A+	С	A+	В	B+	

(b) Collective current control interleave converter

6. まとめ

単相降圧コンバータの出力インダクタンスを同一値とし て N 相インターリーブ化して一括電流制御すると、単相降 圧コンバータのインダクタス値を 1/N してキャリア周波数 を N 倍した場合に近い制御特性(目標値,外乱応答)が得 られることを確認した。

インターリーブ回路一括電流制御方式は PWM キャリア の遅延時間が影響するため,キャリア周波数 N 倍の単相コ ンバータの制御応答,外乱応答性能よりやや劣るものの,N 相インターリーブ化することで,1 相当たりのキャリア周波 数を増加させることなく応答性能を N 倍近くまで向上させ ることができる。従って溶接電源のような大電流電源を装 置大型化することなく高速応答が実現可能となる。

またインターリーブ制御の電流制御手法に関してはイン ダクタンス電流の個別電流制御よりも一括電流制御の方が 制御特性に優れる。その理由は一括電流制御が個別電流制 御に比べてむだ時間 δが 5/9 倍と短くできるためである。な お、N 相インターリーブによって、各インダクタ電流は 1/N となるので、インダクタ体積は全体で 1/N とすることがで きる。結果として単相コンバータのインダクタンス 1/N と 同等体積となり、装置の大型化を避けつつ性能向上するこ とができる。今後、インターリーブー括制御コンバータのキ ャリア周波数を上げるとともに大電流化を行い、溶接電流 の応答性向上を検証していく予定である。

文 献

- (1) 上山智之:「総説 溶接電源」,溶接学会誌, Vol. 77, No. 2, pp.27-32 (2008)
- (2) Oscar García, Pablo Zumel, Angel de Castro, and José A. Cobos: "Automotive DC-DC bidirectional converter made with many interleaved buck stages", IEEE Transactions on Power Electronics, Vol.21, No.3, pp.578-586 (2006)
- (3) W. Huang: "A new control for multi-phase buck converter with fast transient response", Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition, pp.273-279 (2001)
- (4) Y. Kosode, H. Obara, A. Kawamura, Y. Hosoyamada, T. Suenaga, and I. Yuzurihara: "High Performance Transient Response of High/Low Pulse Voltage using Two-Phase Interleaved DC-DC Buck Converter under Half Sampling Time Deadbeat Control" IEEJ Journal of Industry Applications, Vol.9, No.4, pp.444-452 (2020)
- (5) A. Marcos-Pastor1, E. Vidal-Idiarte1, A. Cid-Pastor1 and L. Martinez-Salamero1: "Interleaved Digital Power Factor Correction Based on the Sliding-Mode Approach", IEEE Transactions on Power Electronics, Vol.31, No.6, pp.4641-4653 (2016)
- (6) 恵良哲生:「アーク溶接機器の最新技術」,溶接学会誌, Vol.79, No.6, pp.20-23 (2010)
- (7) トッド・イー・クーケン:「アーク溶接機電源のためのチョッパ出力 ステージ」,特許第 5551104 号 (2014)
- (8) 仲井康二: 「アーク炉の電流制御装置」,特開平 8-273827 (1996)
- K. J. Åström, "Advances in PID Control", The Instrumentation, Systems, and Automation Society, pp.198-199 (2005)
- (10) 三橋成生,井上達夫:「トランジダイン制御系の最適化理論」,富士時報,vol.38, No.4, pp.257-266 (1965)

橋本裕志

(正員) 1966年3月29日生。1991年3月神戸 大学大学院工学研究科修士課程修了。同年4月, (株)神戸製鋼所入社。技術開発本部 応用物理 研究所 電気磁気制御研究室に所属。軟磁性材 料応用部品や溶接電源・プロセスの開発に従 事。

桐嘉伸

(学生員)1998年1月3日生。2020年3月長 岡技術科学大学卒業。同4月 同大学大学院工 学研究科 電気電子工学専攻入学。現在に至る。

(正員) 1989年2月3日生。2013年3
月,長岡技術科学大学大学院工学研究科修士課程修了。同年4月,同大学大学院博士後期課程エネルギー・環境工学専攻入学。2015年12月から2016年6月までSwiss Federal Institute of Technology in Lausanne (EPFL)にTraineeとして所属。同年3月,長岡技術科学大学大学院博士後期課程修了。博士

(工学)。 2016 年 4 月より長岡技術科学大学産学官連携研究員。 2018 年 4 月より同大学助教。現在に至る。 2018 年 I PEC second prize paper award 受賞。主に非接触給電システム,太陽光発電向 け電力変換回路の研究に従事。IEEE member,自動車技術会会員。

58 回電気科学技術奨励賞, 2012 年インテリジェントコスモス奨 励賞, 2014 年, 2016 年電気学会産業応用部門論文賞, 2017 年 文部科学大臣表彰・科学技術賞 開発部門 2018 年第 4 回永守賞, 受賞。 IEEE Senior member, 自動車技術会会員。